Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given a parabola in standard form

f(x) = ax² + bx + c ( a ≠ 0 )

Then the discriminant Δ = b² - 4ac informs us about the nature of the zeros

• If b² - 4ac > 0 then 2 real and irrational zeros

• If b² - 4ac > 0 and a perfect square then 2 real and rational zeros

• If b² - 4ac = 0 then 2 real and equal zeros

• b² - 4ac < 0 then zeros are not real

Given

f(x) = 3(x - 4)² - 12 ← expand factor using FOIL

     = 3(x² - 8x + 16) - 12 ← distribute parenthesis by 3

     = 3x² - 24x + 48 - 12

     = 3x² - 24x + 36 ← in standard form

with a = 3, b = - 24 , c = 36 , then

b² - 4ac

= (- 24)² - (4 × 3 × 36

= 576 - 432      

= 144 ← a perfect square

Then 2 zeros are real and rational  and produce 2 x- intercepts