Which polynomials are listed with their correct additive inverse? Check all that apply. X2 3x â€"" 2; â€""x2 â€"" 3x 2 â€""y7 â€"" 10; â€""y7 10 6z5 6z5 â€"" 6z4; (â€""6z5) (â€""6z5) 6z4 x â€"" 1; 1 â€"" x (â€""5x2) (â€""2x) (â€""10); 5x2 â€"" 2x 10.

Respuesta :

Given to us:

[tex](a)\ x^2+3x-2;\ -x^2-3x+2\\\\(b)\ -y^7-10;\ -y^7+10\\\\(c)\ 6z^5+6z^5-6z^4;\ (-6z^5)-(6z^5)+6z^4;\\\\(d)\ x-1;\ -x+1\\\\(e)\ (-5x^2) + (-2x) + (-10);\ 5x^2 - 2x + 10[/tex]

Additive inverse means changing the sign of the number and adding it to the original number to get 0(zero) as our answer.

(a)

[tex]x^2+3x-2;\ -x^2-3x+2)\\x^2+3x-2 +( -x^2-3x+2)\\[/tex] on solving this we will get zero.

hence, this is an additive inverse.

(b)

[tex]-y^7-10;\ -y^7+10\\-y^7-10+( -y^7+10)[/tex]  on solving this we will not be getting zero.

hence, this is not an additive inverse.

(c)

[tex]6z^5+6z^5-6z^4;\ (-6z^5)-(6z^5)+6z^4,\\\\6z^5+6z^5-6z^4+[ (-6z^5)-(6z^5)+6z^4}[/tex]  on solving this we will get zero.

hence, this is an additive inverse.

(d)

[tex]x-1;\ -x+1\\x-1+( -x+1)[/tex]    on solving this we will get zero.

hence, this is an additive inverse.

(e)

[tex]-5x^2 + -2x -10;\ 5x^2 (- 2x) + 10\\-5x^2 + -2x -10+ 5x^2 (- 2x) + 10[/tex]  on solving this we will not be getting zero.

hence, this is not an additive inverse.

To know more visit:

https://brainly.com/question/13715269