Given to us:
[tex](a)\ x^2+3x-2;\ -x^2-3x+2\\\\(b)\ -y^7-10;\ -y^7+10\\\\(c)\ 6z^5+6z^5-6z^4;\ (-6z^5)-(6z^5)+6z^4;\\\\(d)\ x-1;\ -x+1\\\\(e)\ (-5x^2) + (-2x) + (-10);\ 5x^2 - 2x + 10[/tex]
Additive inverse means changing the sign of the number and adding it to the original number to get 0(zero) as our answer.
(a)
[tex]x^2+3x-2;\ -x^2-3x+2)\\x^2+3x-2 +( -x^2-3x+2)\\[/tex] on solving this we will get zero.
hence, this is an additive inverse.
(b)
[tex]-y^7-10;\ -y^7+10\\-y^7-10+( -y^7+10)[/tex] on solving this we will not be getting zero.
hence, this is not an additive inverse.
(c)
[tex]6z^5+6z^5-6z^4;\ (-6z^5)-(6z^5)+6z^4,\\\\6z^5+6z^5-6z^4+[ (-6z^5)-(6z^5)+6z^4}[/tex] on solving this we will get zero.
hence, this is an additive inverse.
(d)
[tex]x-1;\ -x+1\\x-1+( -x+1)[/tex] on solving this we will get zero.
hence, this is an additive inverse.
(e)
[tex]-5x^2 + -2x -10;\ 5x^2 (- 2x) + 10\\-5x^2 + -2x -10+ 5x^2 (- 2x) + 10[/tex] on solving this we will not be getting zero.
hence, this is not an additive inverse.
To know more visit:
https://brainly.com/question/13715269