contestada


A 12-kg block on a horizontal frictionless surface is attached to a light
spring (force constant = 0.80 kN/m). The block is initially at rest at its
equilibrium position when a force (magnitude P = 80 N) acting parallel to
the surface is applied to the block, as shown. What is the speed of the
block when it is 13 cm from its equilibrium position?"


Respuesta :

The speed of the block at the displacement from the equilibrium position is 1.062 m/s.

The given parameters:

  • Mass of the block, m = 12 kg
  • Spring constant, k = 0.8 kN/m
  • Extension of the spring, x = 13 cm = 0.13 m
  • Applied parallel force, F = 80 N

The speed of the block is calculated by applying the principle of conservation of mechanical energy as shown below;

[tex]\frac{1}{2} mv^2 = \frac{1}{2}kx^2\\\\mv^2 = kx^2\\\\v^2 = \frac{kx^2}{m} \\\\v = \sqrt{\frac{kx^2}{m} } \\\\v = \sqrt{\frac{800 \times 0.13^2}{12} } \\\\v = 1.062 \ m/s[/tex]

Thus, the speed of the block at the displacement from the equilibrium position is 1.062 m/s.

Learn more about conservation of mechanical energy here: https://brainly.com/question/6852965

Answer:

The speed of the block at the displacement from the equilibrium position is 1.1266 m/s.

Step-by-step explanation:

Solution :

Using principle of conservation of mechanical energy formula to find the speed of the block :

[tex]\begin{gathered} \longrightarrow{\pmb{\sf{\frac{1}{2} mv^2 = \frac{1}{2}kx^2}}}\end{gathered}[/tex]

  • »» m = Mass of the block,
  • »» k = Spring constant,
  • »» x = Extension of the spring
  • »» F = Applied parallel force

As per given data information in the question we have :

  • ✧ Mass of the block = 12 kg
  • ✧ Spring constant = 0.8 kN/m
  • ✧ Extension of the spring = 0.13 m
  • ✧ Applied parallel force = 80 N

Substituting all the given values in the formula to find the speed of the block

[tex]\longrightarrow{\sf{ \: \:\dfrac{1}{2} mv^2 = \dfrac{1}{2}kx^2}}[/tex]

[tex]\longrightarrow{\sf{ \: \: \cancel{\dfrac{1}{2}}mv^2 = \cancel{\dfrac{1}{2}}kx^2}}[/tex]

[tex]\longrightarrow{\sf{ \: \: mv^2 = kx^2}}[/tex]

[tex]\longrightarrow{\sf{ \: \: v^2 = \dfrac{kx^2}{m}}}[/tex]

[tex]\longrightarrow{\sf{ \: \: \sqrt{{v}^{2} } = \sqrt{ \dfrac{kx^2}{m}}}}[/tex]

[tex]\longrightarrow{\sf{ \: \: v = \sqrt{ \dfrac{kx^2}{m}}}}[/tex]

[tex]\longrightarrow{\sf{ \: \: v = \sqrt{ \dfrac{800 \times {0.13}^{2}}{12}}}}[/tex]

[tex]\longrightarrow{\sf{ \: \: v = \sqrt{ \dfrac{800 \times {0.13} \times 0.13}{12}}}}[/tex]

[tex]\longrightarrow{\sf{ \: \: v = \sqrt{ \dfrac{800 \times 0.0169}{12}}}}[/tex]

[tex]\longrightarrow{\sf{ \: \: v = \sqrt{ \dfrac{13.52}{12}}}}[/tex]

[tex]{\star{\underline{\boxed{\rm{\red{ v \approx 1.1266 \: m/s}}}}}}[/tex]

Hence, the speed of block is 1.1266 m/s.

[tex] \rule{300}{1.5}[/tex]