Respuesta :
The remainder of the equation is [tex]\rm 28x+30[/tex].
Given that,
When the equation [tex]\rm 3x^3-2x^2+4x-3[/tex] is divided by [tex]\rm x^2+3x+3[/tex].
We have to find,
The remainder of the equation?
According to the question,
The equation [tex]\rm 3x^3-2x^2+4x-3[/tex] is divided by [tex]\rm x^2+3x+3[/tex].
On the division of the polynomial, the remainder is,
[tex]\dfrac{\rm 3x^3-2x^2+4x-3}{\rm x^2+3x+3}[/tex]
Factorize the equation to convert this into the simplest form,
[tex]\rm 3x^3-2x^2+4x-3\\\\3x^3-11x^2+9x^2+9x+28x-33x-33+30\\\\Taking \ the \ common \ terms \ and \ simplify\ the\ equation\\\\3x^3+9x^2+9x+11x^2+33x-33+28x+30\\\\3x(x^2+3x+3) - 11(x^2+3x+3) + 28x+30\\\\(3x+11) (x^2+3x+3) +28x +30[/tex]
Now, the equation can be written as,
[tex]\rm = \dfrac{(3x+11) (x^2+3x+3) +28x +30}{ x^2+3x+3}\\\\= \dfrac{(3x+11) (x^2+3x+3) }{ x^2+3x+3} + \dfrac{28x +30}{ x^2+3x+3}\\\\= (3x+11) + \dfrac{28x +30}{ x^2+3x+3}\\\\[/tex]
The relation between the divisor, remainder, and quotient is,
[tex]\rm = Quotient + \dfrac{Remainder}{Divisor}[/tex]
On comparing with the equation,
The remainder becomes 28x +30.
Hence, The required remainder of the equation is [tex]\rm 28x+30[/tex].
For more details refer to the link given below.
https://brainly.com/question/25880057