Respuesta :
Answer:
[tex]x=-1[/tex] and [tex]x=-5[/tex]
Step-by-step explanation:
[tex]f(x)=(x+3)^2-4[/tex]
[tex]0=(x+3)^2-4[/tex]
[tex]0=(x^2+6x+9)-4[/tex]
[tex]0=x^2+6x+5[/tex]
[tex]0=(x+1)(x+5)[/tex]
[tex]x=-1[/tex] and [tex]x=-5[/tex]
Answer:
[tex]x=-1,\:x=-5[/tex]
Step-by-step explanation:
Solve the equation:
[tex]f(x)=\left(x+3\right)^2-4=0[/tex]
[tex]\left(x+3\right)^2-4=0[/tex]
[tex]\mathrm{Add\:}4\mathrm{\:to\:both\:sides}[/tex]
[tex]\left(x+3\right)^2-4+4=0+4[/tex]
[tex]\left(x+3\right)^2=4[/tex]
[tex]x+3=\sqrt{4}:x=-1[/tex]
[tex]x+3=\sqrt{2^2}[/tex]
[tex]x+3=2[/tex]
[tex]x+3-3=2-3[/tex]
[tex]x=-1[/tex]
[tex]x+3=-\sqrt{4}:x=-5[/tex]
[tex]x+3=-\sqrt{4}[/tex]
[tex]x+3=-2[/tex]
[tex]x+3-3=-2-3[/tex]
[tex]x=-5[/tex]
Now, look at the points plotted on the graph:

