Can i get some help :

Answer:
b = [tex]\frac{7}{12}[/tex]
Step-by-step explanation:
b + [tex]\frac{2}{3}[/tex] = 1 [tex]\frac{1}{4}[/tex] ← change to an improper fraction
b + [tex]\frac{2}{3}[/tex] = [tex]\frac{5}{4}[/tex]
Multiply through by 12 ( the LCM of 3 and 4 ) to clear the fractions
12b + 8 = 15 ( subtract 8 from both sides )
12b = 7 ( divide both sides by 12 )
b = [tex]\frac{7}{12}[/tex]
Answer:
The value of b is 7/12.
Step-by-step explanation:
Question :
Solve for b.
[tex]{\implies{\sf{b + \dfrac{2}{3} = 1 \dfrac{1}{4}}}}[/tex]
Enter your answer as a fraction in simplest form in the box.
[tex]\implies{\sf{b = \square}}[/tex]
[tex]\begin{gathered}\end{gathered}[/tex]
Solution :
[tex]{\implies{\sf{b + \dfrac{2}{3} = 1 \dfrac{1}{4}}}}[/tex]
Converting the mixed fractions into improper fraction.
[tex]{\implies{\sf{b + \dfrac{2}{3} = \dfrac{(1 \times 4) + 1}{4}}}}[/tex]
[tex]{\implies{\sf{b + \dfrac{2}{3} = \dfrac{(4)+ 1}{4}}}}[/tex]
[tex]{\implies{\sf{b + \dfrac{2}{3} = \dfrac{4+ 1}{4}}}}[/tex]
[tex]{\implies{\sf{b + \dfrac{2}{3} = \dfrac{5}{4}}}}[/tex]
Now, transporting LHS to RHS.
[tex]{\implies{\sf{b= \dfrac{5}{4} - \dfrac{2}{3}}}}[/tex]
Taking LCM of denominators and subtracting.
[tex]{\implies{\sf{b= \dfrac{(5 \times 3) - (2 \times 4)}{12}}}}[/tex]
[tex]{\implies{\sf{b= \dfrac{(15) - (8)}{12}}}}[/tex]
[tex]{\implies{\sf{b= \dfrac{15 - 8}{12}}}}[/tex]
[tex]{\implies{\sf{b= \dfrac{7}{12}}}}[/tex]
[tex]{\star{\red{\underline{\boxed{\sf{b= \dfrac{7}{12}}}}}}}[/tex]
Hence, the value of b is 7/12.
[tex]\begin{gathered}\end{gathered}[/tex]
Verification :
[tex]{\implies{\sf{b + \dfrac{2}{3} = 1 \dfrac{1}{4}}}}[/tex]
Substituting the value of (b=7/12)
[tex]{\implies{\sf{ \dfrac{7}{12} + \dfrac{2}{3} = 1 \dfrac{1}{4}}}}[/tex]
Converting mixed fractions into improper fraction
[tex]{\implies{\sf{ \dfrac{7}{12} + \dfrac{2}{3} = \dfrac{(1 \times 4) + 1}{4}}}}[/tex]
[tex]{\implies{\sf{ \dfrac{7}{12} + \dfrac{2}{3} = \dfrac{(4) + 1}{4}}}}[/tex]
[tex]{\implies{\sf{ \dfrac{7}{12} + \dfrac{2}{3} = \dfrac{4 + 1}{4}}}}[/tex]
[tex]{\implies{\sf{ \dfrac{7}{12} + \dfrac{2}{3} = \dfrac{5}{4}}}}[/tex]
Taking LCM of denominators in LHS and adding.
[tex]{\implies{\sf{ \dfrac{(7 \times 1) + (2 \times 4)}{12} = \dfrac{5}{4}}}}[/tex]
[tex]{\implies{\sf{ \dfrac{(7) + (8)}{12} = \dfrac{5}{4}}}}[/tex]
[tex]{\implies{\sf{ \dfrac{7 + 8}{12} = \dfrac{5}{4}}}}[/tex]
[tex]{\implies{\sf{ \dfrac{15}{12} = \dfrac{5}{4}}}}[/tex]
Cutting the fraction to simplest form.
[tex]{\implies{\sf{ \cancel{\dfrac{15}{12}} = \dfrac{5}{4}}}}[/tex]
[tex]{\implies{\sf{ \dfrac{5}{4}= \dfrac{5}{4}}}}[/tex]
[tex]{\star{\red{\underline{\boxed{\sf{LHS = RHS}}}}}}[/tex]
Hence Verified!
[tex]\underline{\rule{220pt}{3.5pt}}[/tex]