The population 5 years from now would be 60482
The population growth rate is given as:
[tex]r(t) = 400(1 + \frac{2t}{24 + t^2})[/tex]
The value of t, 5 years from now is represented as:
t = 5
Substitute 5 for t in the function r(t).
So, we have:
[tex]r(5) = 400(1 + \frac{2 \times 5}{24 + 5^2})[/tex]
Evaluate the exponent
[tex]r(5) = 400(1 + \frac{2 \times 5}{24 + 25})[/tex]
Evaluate the products
[tex]r(5) = 400(1 + \frac{10}{24 + 25})[/tex]
So, we have:
[tex]r(5) = 400(1 + \frac{10}{49})[/tex]
Divide 10 by 49
[tex]r(5) = 400(1 + 0.204)[/tex]
This gives
[tex]r(5) = 400(1.204)[/tex]
Expand
[tex]r(5) = 481.6[/tex]
The current population is given as 60000.
So, the population (P) 5 years from now would be
[tex]P = 60000 + 481.6[/tex]
[tex]P = 60481.6[/tex]
Approximate
[tex]P = 60482[/tex]
Hence, the population (P) 5 years from now would be 60482
Read more about population functions at:
https://brainly.com/question/20115298