a) 9 b) 10 c) 12 d) 15
will give brainliest plz help

[tex]y = \frac{x}{2} [/tex]
[tex]2x + 2y = \sqrt{180} \\ = > 2x + 2( \frac{x}{2} ) = \sqrt{180} \\ = > 2x + x = \sqrt{2 \times 2 \times 3 \times 3 \times 5} \\ = > 3x = 2 \times 3\sqrt{5} \\ = > 3x = 6 \sqrt{5} \\ = > x = \frac{6 \sqrt{5} }{3} \\ = > x = 2 \sqrt{5} [/tex]
[tex]x.y \\ = x \times \frac{x}{2} \\ = \frac{ {x}^{2} }{2} \\ = \frac{ {(2 \sqrt{5} )}^{2} }{2} \\ = \frac{4 \times 5}{2} \\ = \frac{20}{2} \\ = 10[/tex]
Answer:
10
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
b
Step-by-step explanation:
Given
2x + 2y = [tex]\sqrt{180}[/tex] = [tex]\sqrt{36(5)}[/tex] = 6[tex]\sqrt{5}[/tex]
and y = [tex]\frac{x}{2}[/tex] , then
2x + (2 × [tex]\frac{x}{2}[/tex] ) = 6[tex]\sqrt{5}[/tex]
2x + x = 6[tex]\sqrt{5}[/tex]
3x = 6[tex]\sqrt{5}[/tex] ( divide both sides by 3 )
x = 2[tex]\sqrt{5}[/tex]
and y = [tex]\frac{2\sqrt{5} }{2}[/tex] = [tex]\sqrt{5}[/tex]
Then
xy = 2[tex]\sqrt{5}[/tex] × [tex]\sqrt{5}[/tex] = 2 × 5 = 10 → b