Respuesta :
Equivalent expressions are expressions that have the same value, and can be used interchangeably.
The result of the sum [tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})[/tex] is [tex]4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})[/tex]
The expression is given as:
[tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})[/tex]
Rewrite the expression as:
[tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (\sqrt[3]{2^4x^3y}) + 4 (\sqrt[3]{3^3 \times 2x^6y^5})[/tex]
Evaluate the roots
[tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (2x\sqrt[3]{2y}) + 4 (3x^2y\sqrt[3]{2y^2})[/tex]
Open the brackets
[tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 4x\sqrt[3]{2y} + 12x^2y\sqrt[3]{2y^2})[/tex]
The above expression cannot be further simplified.
Hence, the result of the sum [tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})[/tex] is [tex]4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832
The sum of the expression is [tex]4 (\sqrt[3]{x^3y} +12x^2y(\sqrt[3]{ 2 y^2})\\[/tex].
We have to determine, the sum of the given expression.
According to the question,
Expression; [tex]2(\sqrt[3]{16x^3y} +4(\sqrt[3]{56x^6y^5})[/tex]
To determine the sum of the given expression following all the steps given below.
Rewrite the expression term in the form of their cubes,
[tex]\rm = 2(\sqrt[3]{16x^3y} +4(\sqrt[3]{56x^6y^5})\\\\ = 2(\sqrt[3]{2^4x^3y} +4(\sqrt[3]{3^3 \times 2 \times x^6y^5})\\\\= 2\times 2(\sqrt[3]{x^3y} +4\times 3(\sqrt[3]{ 2 \times x^6y^5})\\\\= 4 (\sqrt[3]{x^3y} +12x^2y(\sqrt[3]{ 2 y^2})\\\\=4 (\sqrt[3]{x^3y} +12x^2y(\sqrt[3]{ 2 y^2})\\[/tex]
Hence, The sum of the expression is [tex]4 (\sqrt[3]{x^3y} +12x^2y(\sqrt[3]{ 2 y^2})\\[/tex].
For more details refer to the link given below.
https://brainly.com/question/21798224