What is the following sum? 2 (RootIndex 3 StartRoot 16 x cubed y EndRoot) 4 (RootIndex 3 StartRoot 54 x Superscript 6 Baseline y Superscript 5 Baseline) 4 x (RootIndex 3 StartRoot 2 y EndRoot) 12 x squared y (RootIndex 3 StartRoot 2 y squared EndRoot) 8 x (RootIndex 3 StartRoot x y EndRoot) 12 x cubed y squared (RootIndex 3 StartRoot 6 y EndRoot) 16 x cubed y (RootIndex 3 StartRoot 2 y squared EndRoot) 48 x cubed y (RootIndex 3 StartRoot 2 y EndRoot).

Respuesta :

Equivalent expressions are expressions that have the same value, and can be used interchangeably.

The result of the sum [tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})[/tex] is [tex]4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})[/tex]

The expression is given as:

[tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})[/tex]

Rewrite the expression as:

[tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (\sqrt[3]{2^4x^3y}) + 4 (\sqrt[3]{3^3 \times 2x^6y^5})[/tex]

Evaluate the roots

[tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (2x\sqrt[3]{2y}) + 4 (3x^2y\sqrt[3]{2y^2})[/tex]

Open the brackets

[tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 4x\sqrt[3]{2y} + 12x^2y\sqrt[3]{2y^2})[/tex]

The above expression cannot be further simplified.

Hence, the result of the sum [tex]2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})[/tex] is [tex]4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/2972832

The sum of the expression is [tex]4 (\sqrt[3]{x^3y} +12x^2y(\sqrt[3]{ 2 y^2})\\[/tex].

We have to determine, the sum of the given expression.

According to the question,

Expression; [tex]2(\sqrt[3]{16x^3y} +4(\sqrt[3]{56x^6y^5})[/tex]

To determine the sum of the given expression following all the steps given below.

Rewrite the expression term in the form of their cubes,

[tex]\rm = 2(\sqrt[3]{16x^3y} +4(\sqrt[3]{56x^6y^5})\\\\ = 2(\sqrt[3]{2^4x^3y} +4(\sqrt[3]{3^3 \times 2 \times x^6y^5})\\\\= 2\times 2(\sqrt[3]{x^3y} +4\times 3(\sqrt[3]{ 2 \times x^6y^5})\\\\= 4 (\sqrt[3]{x^3y} +12x^2y(\sqrt[3]{ 2 y^2})\\\\=4 (\sqrt[3]{x^3y} +12x^2y(\sqrt[3]{ 2 y^2})\\[/tex]

Hence, The sum of the expression is [tex]4 (\sqrt[3]{x^3y} +12x^2y(\sqrt[3]{ 2 y^2})\\[/tex].

For more details refer to the link given below.

https://brainly.com/question/21798224