Respuesta :

Answer:7 x 2 − 14 x + 5

Step-by-step explanation:

1 In general, given a{x}^{2}+bx+cax  

2

+bx+c, the factored form is:

a(x-\frac{-b+\sqrt{{b}^{2}-4ac}}{2a})(x-\frac{-b-\sqrt{{b}^{2}-4ac}}{2a})

a(x−  

2a

−b+  

b  

2

−4ac

 

)(x−  

2a

−b−  

b  

2

−4ac

 

)

2 In this case, a=7a=7, b=-14b=−14 and c=5c=5.

7(x-\frac{14+\sqrt{{(-14)}^{2}-4\times 7\times 5}}{2\times 7})(x-\frac{14-\sqrt{{(-14)}^{2}-4\times 7\times 5}}{2\times 7})

7(x−  

2×7

14+  

(−14)  

2

−4×7×5

 

)(x−  

2×7

14−  

(−14)  

2

−4×7×5

 

)

3 Simplify.

7(x-\frac{14+2\sqrt{14}}{14})(x-\frac{14-2\sqrt{14}}{14})

7(x−  

14

14+2  

14

 

)(x−  

14

14−2  

14

 

)

4 Factor out the common term 22.

7(x-\frac{2(7+\sqrt{14})}{14})(x-\frac{14-2\sqrt{14}}{14})

7(x−  

14

2(7+  

14

)

)(x−  

14

14−2  

14

 

)

5 Simplify  \frac{2(7+\sqrt{14})}{14}  

14

2(7+  

14

)

  to  \frac{7+\sqrt{14}}{7}  

7

7+  

14

 

.

7(x-\frac{7+\sqrt{14}}{7})(x-\frac{14-2\sqrt{14}}{14})

7(x−  

7

7+  

14

 

)(x−  

14

14−2  

14

 

)

6 Simplify  \frac{7+\sqrt{14}}{7}  

7

7+  

14

 

  to  1+\frac{\sqrt{14}}{7}1+  

7

14

 

.

7(x-(1+\frac{\sqrt{14}}{7}))(x-\frac{14-2\sqrt{14}}{14})

7(x−(1+  

7

14

 

))(x−  

14

14−2  

14

 

)

7 Remove parentheses.

7(x-1-\frac{\sqrt{14}}{7})(x-\frac{14-2\sqrt{14}}{14})

7(x−1−  

7

14

 

)(x−  

14

14−2  

14

 

)

8 Factor out the common term 22.

7(x-1-\frac{\sqrt{14}}{7})(x-\frac{2(7-\sqrt{14})}{14})

7(x−1−  

7

14

 

)(x−  

14

2(7−  

14

)

)

9 Simplify  \frac{2(7-\sqrt{14})}{14}  

14

2(7−  

14

)

  to  \frac{7-\sqrt{14}}{7}  

7

7−  

14

 

.

7(x-1-\frac{\sqrt{14}}{7})(x-\frac{7-\sqrt{14}}{7})

7(x−1−  

7

14

 

)(x−  

7

7−  

14

 

)

10 Simplify  \frac{7-\sqrt{14}}{7}  

7 7−  14  to  1-\frac{\sqrt{14}}{7}1−  7 14

7(x-1-\frac{\sqrt{14}}{7})(x-(1-\frac{\sqrt{14}}{7}))

7(x−1−  7 /14 )(x−(1−  7 14 )) 11 Remove parentheses.

7(x-1-\frac{\sqrt{14}}{7})(x-1+\frac{\sqrt{14}}{7})

7(x−1−  7/ 14 .7(x−1+ 7 14 )