Respuesta :
x is the days that the first team finishes the work alone (x>8)
y --------------------------second-----------------------------------------(y>8)
In a day:
- The first team finishes 1/x (the work)
- The second team finishes 1/y (the work)
- Two teams working together finish 1/8 (the work)
⇒      [tex]\frac{1}{x}+ \frac{1}{y} =\frac{1}{8}[/tex]        (1)
If the first team works alone for two days and the second team works alone for 5 days, 5/8 of the total work still remains:
⇒      [tex]\frac{2}{x}+\frac{5}{y}=\frac{3}{8}[/tex]         (2)
(1),(2)  ⇒  [tex]\left \{ {{\frac{1}{x}+ \frac{1}{y} =\frac{1}{8}} \atop {\frac{2}{x}+\frac{5}{y}=\frac{3}{8}}} \right. <=>\left \{ {{x=16} \atop {y=24}} \right.[/tex]
It'll take the first team 16 days and the second team 24 days to finish the work alone
ok done. Thank to me :>