Respuesta :

Answer:

A = 12√3

Step-by-step explanation:

first find the limits by finding the zeros

0 = 9 − 3x²

3x² = 9

x² = 3

x = ±[tex]\sqrt{3}[/tex]

[tex]A = \int\limits^a_b ({9 - 3x^2\\}) - 0\, dx[/tex]

where b = [tex]-\sqrt{3}[/tex] and a = [tex]\sqrt{3\\}[/tex]

A = 9x - x³ [tex]\left \{ {{\sqrt{3} } \atop {-\sqrt{3} }} \right.[/tex]

[tex]A = 9\sqrt{3} - \sqrt{3} ^3 - (9(-\sqrt{3)} - (-\sqrt{3} )^3)[/tex]

[tex]A = 9\sqrt{3} -3\sqrt{3} +9\sqrt{3} - 3\sqrt{3}[/tex]

[tex]A = 12\sqrt{3}[/tex]

Ver imagen Аноним

Otras preguntas