Respuesta :
Answer:
[tex]\boxed {\boxed {\sf 36 \ meters}}[/tex]
Explanation:
We are asked to find the distance a body covers. We know the initial velocity, acceleration, and time, so we will use the following kinematic equation.
[tex]d= v_i t+ \frac {1}{2} \ at^2[/tex]
The body starts at rest with an initial velocity of 0 meters per second. The acceleration is 8 meters per second squared. The time is 3.0 seconds.
- [tex]v_i[/tex]= 0 m/s
- a= 8 m/s²
- t= 3 s
Substitute the values into the formula.
[tex]d= (0 \ m/s)(3 \ s) + \frac{1}{2} (8 \ m/s^2)(3 \ s)^2[/tex]
Multiply the first set of parentheses.
[tex]d= ( 0 \ m/s * 3 \ s) + \frac{1}{2} ( 8 \ m/s^2)(3 \ s)^2[/tex]
[tex]d=0 \ m + \frac{1}{2} ( 8 \ m/s^2)(3 \ s)^2[/tex]
Solve the exponent.
- (3 s)²= 3 s* 3 s= 9 s²
[tex]d= 0 \ m + \frac{1}{2}( 8 \ m/s^2)(9 \ s^2)[/tex]
Multiply again.
[tex]d= 0 \ m + \frac{1}{2} ( 72 \ m)[/tex]
[tex]d= 36 \ m[/tex]
The body will cover a distance of 36 meters.