Respuesta :
Answer:
[tex]4\frac{23}{33}[/tex]
Step-by-step explanation:
[tex]5 \frac{2}{12}[/tex] × [tex]\frac{10}{11}[/tex]
[tex]\frac{62}{12}[/tex] × [tex]\frac{10}{11}[/tex]
[tex]\frac{62*10}{12*11}[/tex]
[tex]\frac{620}{132}[/tex]
Divide both sides by 4
[tex]\frac{155}{33}[/tex]
Now let us write it as a mixed number
[tex]4\frac{23}{33}[/tex]
Hope this helps you :-)
Answer:
Question :
[tex] \dashrightarrow{5 \dfrac{2}{12} \times \dfrac{10}{11}}[/tex]
Solution :
[tex] \dashrightarrow{5 \dfrac{2}{12} \times \dfrac{10}{11}}[/tex]
Coverting 5-1/2 into improper fraction :
[tex] \dashrightarrow{\dfrac{(5 \times 12) + (2)}{12} \times \dfrac{10}{11}}[/tex]
[tex] \dashrightarrow{\dfrac{(60) + (2)}{12} \times \dfrac{10}{11}}[/tex]
[tex] \dashrightarrow{\dfrac{60 + 2}{12} \times \dfrac{10}{11}}[/tex]
[tex] \dashrightarrow{\dfrac{62}{12} \times \dfrac{10}{11}}[/tex]
Performing multiplication :
[tex] \dashrightarrow{\dfrac{62 \times 10}{12 \times 11}}[/tex]
[tex] \dashrightarrow{\dfrac{620}{132}}[/tex]
Cutting the fraction into simplest form :
[tex] \dashrightarrow{ \cancel{\dfrac{620}{132}}}[/tex]
[tex] \dashrightarrow{ \dfrac{155}{33}}[/tex]
Coverting the improper fraction into mixed fraction :
[tex]{\dashrightarrow{\sf{\underline{\underline{\red{4 \dfrac{22}{33}}}}}}}[/tex]
Hence, the answer is [tex]\bf{4 \dfrac{22}{33}}[/tex].