Respuesta :

Hi1315

Answer:

[tex]4\frac{23}{33}[/tex]

Step-by-step explanation:

[tex]5 \frac{2}{12}[/tex]    ×    [tex]\frac{10}{11}[/tex]

[tex]\frac{62}{12}[/tex]    ×   [tex]\frac{10}{11}[/tex]

[tex]\frac{62*10}{12*11}[/tex]

[tex]\frac{620}{132}[/tex]

Divide both sides by 4

[tex]\frac{155}{33}[/tex]

Now let us write it as a mixed number

[tex]4\frac{23}{33}[/tex]

Hope this helps you :-)

Answer:

Question :

[tex] \dashrightarrow{5 \dfrac{2}{12} \times \dfrac{10}{11}}[/tex]

Solution :

[tex] \dashrightarrow{5 \dfrac{2}{12} \times \dfrac{10}{11}}[/tex]

Coverting 5-1/2 into improper fraction :

[tex] \dashrightarrow{\dfrac{(5 \times 12) + (2)}{12} \times \dfrac{10}{11}}[/tex]

[tex] \dashrightarrow{\dfrac{(60) + (2)}{12} \times \dfrac{10}{11}}[/tex]

[tex] \dashrightarrow{\dfrac{60 + 2}{12} \times \dfrac{10}{11}}[/tex]

[tex] \dashrightarrow{\dfrac{62}{12} \times \dfrac{10}{11}}[/tex]

Performing multiplication :

[tex] \dashrightarrow{\dfrac{62 \times 10}{12 \times 11}}[/tex]

[tex] \dashrightarrow{\dfrac{620}{132}}[/tex]

Cutting the fraction into simplest form :

[tex] \dashrightarrow{ \cancel{\dfrac{620}{132}}}[/tex]

[tex] \dashrightarrow{ \dfrac{155}{33}}[/tex]

Coverting the improper fraction into mixed fraction :

[tex]{\dashrightarrow{\sf{\underline{\underline{\red{4 \dfrac{22}{33}}}}}}}[/tex]

Hence, the answer is [tex]\bf{4 \dfrac{22}{33}}[/tex].