Respuesta :
[tex](2x + 5)= (2x + 3)(2x - 1)\\<=>2x+5=4x^2-2x+6x-3\\<=>4x^2-2x+6x-3-2x-5=0\\<=>4x^2+2x-8=0\\<=>(4x+1-\sqrt{33})( 4x+1+\sqrt{33})=0 \\<=> x=\frac{-1+\sqrt{33} }{4} /or/x=\frac{-1-\sqrt{33} }{4}[/tex]
Answer:
x = -1± sqrt( 33)
----------------------------
4
Step-by-step explanation:
(2x + 5)= (2x + 3)(2x - 1)
Distribute
2x+5 = 4x^2 +6x-2x-3
Combine like terms
2x+5 = 4x^2 +4x -3
Subtract 2x +5 from each side
0 = 4x^2 +4x-3-2x-5
Combine like terms
0 =4x^2 +2x -8
Using the quadratic formula
a=4 b=2 c=-8
x = -b± sqrt( b^2-4ac)
----------------------------
2a
x = -2± sqrt( 2^2-4(4)(-8))
----------------------------
2(4)
x = -2± sqrt( 4+128)
----------------------------
8
x = -2± sqrt( 132)
----------------------------
8
x = -2± 2sqrt( 33)
----------------------------
8
x = -1± sqrt( 33)
----------------------------
4