Respuesta :
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
Let's solve ~
Given terms :
- Mass (m) = 7 kg
- velocity (v)= 4 m/s
The formula to find kinetic Energy is ~
[tex] \boxed{ \boxed{ \sf{ \frac{1}{2} m{v}^{2} }}} [/tex]
Now, apply the formula according to given situation
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \: \dfrac{1}{2} \times 7 \times ( {4)}^{2} [/tex]
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \: \dfrac{1}{2} \times 7 \times 16[/tex]
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:7 \times 8[/tex]
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:56 \: \: joules[/tex]
Therefore, the kinetic Energy of the car is 56 joules
Answer:
56 J
Explanation:
Formula to find the kinetic energy is :
[tex]E_k[/tex] = [tex]\frac{1}{2} [/tex] × m × v²
Here ,
m ⇒ mass
v ⇒ velocity
Let us solve now
[tex]E_k[/tex] = [tex]\frac{1}{2} [/tex] × m × v²
= [tex]\frac{1}{2} [/tex] × 7 kg × ( 4 ms⁻¹ )²
= [tex]\frac{1}{2} [/tex] × 7 × 16
= [tex]\frac{1}{2} [/tex] × 112
= 56 J
Hope this helps you :-)
Let me know if you have any other questions :-)