contestada

Calculate the height of a cuboid which has a base area of 180 cm2 and volume is 900 cm3
[tex]help[/tex]

Respuesta :

Answer:

Height of the Cuboid = 5 cm

Step-by-step explanation:

[tex] \bf \: Given:[/tex]

Base area = 180 cm²

Volume = 900 cm³

[tex] \bf \: To \: find : [/tex]

The height of the cuboid

[tex] \bf \: Solution:[/tex]

We know that ,

[tex] \boxed{\sf \: Volume \: of \: Cuboid = base \: area \times height}[/tex]

[tex] \rm \: S o,put \: the \: values : [/tex]

[tex] \sf \implies 900 = 180 \times height[/tex]

This is an equation which will help in finding the value of height.

Note: The answer would be in cm.

[tex] \bf \: Solve \: this \: equation. [/tex]

Change their respective sides :

[tex] \sf \implies \: height \times180 = 900[/tex]

Now,

[tex]\sf \implies{height} = \cfrac{900}{180} [/tex]

Cancel a zero of 900 and a zero 180:

[tex]\sf \implies{height} = \cfrac{90 \cancel0}{ 18\cancel0} [/tex]

[tex]\sf \implies \: height = \cfrac{ 90}{18} [/tex]

Cancel 90 and 18 :

[tex]\sf \implies{heigh}t = \cfrac{ \cancel{{90}}^5}{ \cancel{{18}} ^1 } [/tex]

[tex]\sf \implies height = 5 \: cm [/tex]

Hence, the height of the cuboid would be 5 cm .

[tex]\rule{225pt}{2pt}[/tex]

I hope this helps!