Answer:
Height of the Cuboid = 5 cm
Step-by-step explanation:
[tex] \bf \: Given:[/tex]
Base area = 180 cm²
Volume = 900 cm³
[tex] \bf \: To \: find : [/tex]
The height of the cuboid
[tex] \bf \: Solution:[/tex]
We know that ,
[tex] \boxed{\sf \: Volume \: of \: Cuboid = base \: area \times height}[/tex]
[tex] \rm \: S o,put \: the \: values : [/tex]
[tex] \sf \implies 900 = 180 \times height[/tex]
This is an equation which will help in finding the value of height.
Note: The answer would be in cm.
[tex] \bf \: Solve \: this \: equation. [/tex]
Change their respective sides :
[tex] \sf \implies \: height \times180 = 900[/tex]
Now,
[tex]\sf \implies{height} = \cfrac{900}{180} [/tex]
Cancel a zero of 900 and a zero 180:
[tex]\sf \implies{height} = \cfrac{90 \cancel0}{ 18\cancel0} [/tex]
[tex]\sf \implies \: height = \cfrac{ 90}{18} [/tex]
Cancel 90 and 18 :
[tex]\sf \implies{heigh}t = \cfrac{ \cancel{{90}}^5}{ \cancel{{18}} ^1 } [/tex]
[tex]\sf \implies height = 5 \: cm [/tex]
Hence, the height of the cuboid would be 5 cm .
[tex]\rule{225pt}{2pt}[/tex]
I hope this helps!