this is the last one i swear

Answer:
V = 756π cm³
Step-by-step explanation:
The solid shape consists of a cone and a semi sphere
To calculate the volume of the semi sphere we require to find its radius r
Given
volume of cone = 270π , then
[tex]\frac{1}{3} [/tex] πr²h = 270π ( multiply both sides by 3 to clear the fraction )
πr²h = 810π ( divide both sides by π )
r²h = 810
from diagram h = 10
10r² = 810 ( divide both sides by 10 )
r² = 81 ( take square root of both sides )
r = [tex]\sqrt{81} [/tex] = 9
Volume of semi sphere = [tex]\frac{2}{3} [/tex] πr³
= [tex]\frac{2}{3} [/tex] π × 9³
= [tex]\frac{2}{3} [/tex] π × 729
= 2π × 243
= 486π
The volume (V) of the solid shape
V = 270π + 486π = 756π cm³
Answer:
[tex]v=756\pi cm^{3} [/tex]
Step-by-step explanation:
The radio of the cone:
[tex]270=\frac{1}{3} r^{2} (10)[/tex]
[tex]r^{2} =\frac{3(270)}{10} =810/10[/tex]
[tex]r^{2} =81[/tex]
[tex]r=\sqrt{81} =9[/tex]
The half sphere (has the same radio):
[tex]v=\frac{2}{3} \pi (9)^{3} =486\pi [/tex]
The volume of the solid shape:
[tex]v=270\pi +486\pi =756\pi cm^{3} [/tex]
Hope this helps