Respuesta :

Yes mommy is going to go to sleep and I’ll talk to you tomorrow ok bye babe babe love mommy bye babe babe love love mommy mommy mama mama love you mommy mama mommy

Answer:

[tex]\boxed{x \approx1.4}[/tex]

OR

[tex]\boxed{\tt x \approx \cfrac{23}{17}} [/tex]

Step-by-step explanation:

[tex] \bf \: Given \: equation : [/tex]

[tex]17x = 23[/tex]

Make x the subject means we need to find the value of x.

[tex] \bf \: Solution:[/tex]

[tex] \tt \implies \: 17x = 23[/tex]

Divide each side by 17 :

[tex]\tt \implies \cfrac{17x}{17} = \cfrac{23}{17}[/tex]

[tex] \rm \: Firstly, cancel \: the \: LHS :[/tex]

  • Cancel 17 ( which is on the numerator ) and cancel 17 ( which is on the denominator ) :-

[tex]\tt \implies \cfrac{ \cancel{17}x}{ \cancel{17}} = \cfrac{23}{17} [/tex]

  • Results to,

[tex]\tt \implies \: \cfrac{1x}{1} = \cfrac{23}{17} [/tex]

[tex]\tt \implies1x = \cfrac{23}{17} [/tex]

[tex]\tt \implies{x} = \cfrac{23}{17} [/tex]

[tex] \rm \: 23\; and \; 17 \: can't \: be \: cancelled .[/tex]

But, We can convert 23/17 into decimal form.

That is,

[tex]\tt \implies \: x = 23 \div 17[/tex]

[tex]\tt \implies{x} = 1.352[/tex]

[tex]\tt \implies{x} \approx1.4[/tex]

Hence, the value of x would be 23/17 or 1.4 .

[tex] \rule{225pt}{2pt}[/tex]

I hope this helps!

Let me know if you have any questions.

:D