please help mee pleaseee

[tex] \qquad \qquad\huge \underline{\boxed{\sf Answer}}[/tex]
Here's the solution ~
Centre (A) = (0 , 0)
let's use distance formula to find the Radius (AB) :
[tex]\qquad \sf \dashrightarrow \: \sqrt{(2- 0) {}^{2} + (0- 0) {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{(2) {}^{2} + 0} [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{2 {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: 2[/tex]
Radius = 2 units
Centre (A)= (2 , 1)
Let's solve for radius (AB) :
[tex]\qquad \sf \dashrightarrow \: \sqrt{(2 - 2) { }^{2} + (3 - 1) {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{0 + (2) {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{2 {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: 2[/tex]
Radius = 2 units
Centre = (0 , -2)
now, let's find the Radius (AB) :
[tex]\qquad \sf \dashrightarrow \: \sqrt{ ( - 3 - 0) {}^{2} + ( - 2 - ( - 2)) {}^{2} }[/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{( - 3) {}^{2} + 0} [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{( - 3) {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{9} [/tex]
[tex]\qquad \sf \dashrightarrow \: 3[/tex]
Radius = 3 units
Answer:
Step-by-step explanation:
Determine the center by coordinates (x, y) of point A.
Determine the radius by the difference of respective coordinates of the A and B points (the center and the point on the circle).
Points given:
Points given:
Points given: