Respuesta :

Space

Answer:

[tex]\displaystyle d = 15[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Coordinate Planes

  • Coordinates (x, y)

Algebra II

Distance Formula: [tex]\displaystyle d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

Point A(2, 10)

Point C(14, 1)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d.

  1. Substitute in points [Distance Formula]:                                                     [tex]\displaystyle d = \sqrt{(14 - 2)^2 + (1 - 10)^2}[/tex]
  2. [Order of Operations] Evaluate:                                                                  [tex]\displaystyle d = 15[/tex]

Answer:

The distance between AC is 15 units.

Step-by-step explanation:

Here's the required formula to find distance between points A(2, 10) and C(14, 1) :

[tex]{\implies{\small{\pmb{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}}[/tex]

As per given question we have provided that :

[tex]\begin{gathered}\begin{gathered} \footnotesize\rm {\underline{\underline{Where}}}\begin{cases}& \sf x_2 = 14\\ & \sf x_1 = 2\\ & \sf y_2 = 1\\& \sf y_1 = 10\end{cases} \end{gathered}\end{gathered}[/tex]

Substituting all the given values in the formula to find the distance between points A(2, 10) and C(14, 1) :

[tex]\begin{gathered} \quad{\implies{\small{\sf{AC = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}\\\\\quad{\implies{\small{\sf{AC = \sqrt{\Big(14 - 2\Big)^{2} + \Big(1 - 10\Big)^{2}}}}}}\\\\\quad{\implies{\small{\sf{AC = \sqrt{\Big(\: 12 \:\Big)^{2} + \Big( - 9\Big)^{2}}}}}}\\\\ \quad{\implies{\small{\sf{AC = \sqrt{\Big(12 \times 12\Big)+ \Big( - 9 \times - 9\Big)}}}}}\\\\\quad{\implies{\small{\sf{AC = \sqrt{\Big( \: 144 \: \Big)+ \Big( \: 81 \: \Big)}}}}}\\\\ \quad{\implies{\small{\sf{AC = \sqrt{\Big(144 + 81\Big)}}}}}\\\\\quad{\implies{\small{\sf{AC = \sqrt{\Big(225\Big)}}}}}\\\\\quad{\implies{\small{\sf{\underline{\underline{\red{AC = 15}}}}}}} \end{gathered}[/tex]

Hence, the distance between AC is 15 units.

[tex]\rule{300}{2.5}[/tex]