ycgma
contestada

BRAINLIEST +20 pts!!!!

Given trapezoid ABCD with vertices A(1,2) B(7,5) C(5,7) and D(3,6)

The length of the midsegment in simplest radical form is_________

The equation of the line containing the midsegment is____________

Respuesta :

Answer:

Step-by-step explanation:

The mid-segment of a trapezoid is the segment connecting the midpoints of the two non-parallel sides.

The two non-parallel sides of ABCD are BC and AD.

Midpoint of BC = (6, 6)

Midpoint of AD = (2, 4)

Therefore, length between midpoints  [tex]=\sqrt{(6-2)^2+(6-4)^2} =2\sqrt{5} [/tex]

Gradient of mid-segment = [tex]\frac{6-4}{6-2}=\frac{1}{2} [/tex]

Using equation of a straight line and one of the midpoints:

[tex]y-y_1=m(x-x_1)\\ y-6=\frac{1}{2} (x-6)\\ y=\frac{1}{2} x+3[/tex]

So the equation of the line containing the mid-segment is [tex]y=\frac{1}{2} x+3[/tex]

Ver imagen semsee45