Please help me out with this problem

Answer:
(1/8){7x+(1/5)}
Step-by-step explanation:
Given that:
(3/4){(5/6)x} - (3/5){-(1/6)} - 2x(-3/8) = ?
= (3/4) * (5/6)x - (3/5){-(1/6)} - 2x(-3/8)
= (5x/8) + (3/5) * (1/6) - 2x(-3/8)
= (5x/8) + 1/(5*2) - 2x(-3/8)
= (5x/8) + (1/10) - 2x(-3/8)
= (5x/8) + (1/10) - x(-3/4)
= (5x/8) + (1/10) +(3x/4)
= (5x/8) + (3x/4) + (1/10)
Take the LCM of the denominator 4 and 8 is 8.
= {(7x*1 + 3x*2)/8} + (1/10)
= {(7x + 6x)/8} + (1/10)
= {(7x)/8} + (1/10)
= (7x/8) + (1/10)
Take the LCM of the denominator 8 and 10 is 40.
= {(7x*5 + 1*1)/40}
= {(35x + 1)/10}
= (7x/8) + (1/40)
= (1/8){7x+(1/5)} Ans.
Please let me know if you have any other questions.
Answer:
[tex] \rm \longmapsto \: \frac{3}{4} ( \frac{5x}{6} ) + \frac{ - 3}{5} ( \frac{ - 1}{6} ) - 2x( \frac{ - 3}{8} )[/tex]
[tex]\sf \longmapsto \: \frac{3}{4} \times \frac{5x}{6} + \frac{ - 3}{5} ( \frac{ - 1}{6} ) - 2x( \frac{ - 3}{8} )[/tex]
[tex]\sf \longmapsto \: \frac{3 \times 5x}{4 \times 6} + \frac{ - 3}{5} ( \frac{ - 1}{6} ) - 2x( \frac{ - 3}{8} )[/tex]
[tex]\sf \longmapsto \: \frac{15x}{24} + \frac{ - 3}{5} ( \frac{ - 1}{6} ) - 2x( \frac{ - 3}{8} )[/tex]
[tex]\sf \longmapsto \: \frac{5x}{8} + \frac{ - 3}{5} ( \frac{ - 1}{6} ) - 2x( \frac{ - 3}{8} )[/tex]
[tex]\sf \longmapsto \: \frac{5x}{8} + \frac{1}{10} - 2x( \frac{ - 3}{8} )[/tex]
[tex]\sf \longmapsto \: \frac{5x}{8} + \frac{1}{10} + \frac{3}{4} x[/tex]
[tex]\sf \longmapsto \: \frac{5x}{8} + \frac{1}{10} + \frac{3x}{8} [/tex]
[tex]\sf \longmapsto \: \frac{5x + \frac{4}{5} + 2 \times 3x}{8} [/tex]
[tex]\sf \longmapsto \: \frac{5x + \frac{4}{5} + 6x}{8} [/tex]
[tex]\sf \longmapsto \: \frac{5x + 6x + \frac{4}{5} }{8} [/tex]
[tex]\sf \longmapsto \: \frac{11x + \frac{4}{5} }{8} [/tex]