Respuesta :

Answer:

[tex]y=3x^2-6x-3[/tex]

Step-by-step explanation:

Use the quadratic equation in vertex form:

[tex]y=a(x-h)^2+k[/tex]   where (h, k) are the coordinates of the vertex

Therefore, substituting h = 1 and k = -6 into the equation:

[tex]y=a(x-1)^2-6[/tex]

Now substituting the point (4, 21) to find [tex]a[/tex]:

[tex]y=a(4-1)^2-6=21[/tex]

                      [tex]9a=27[/tex]

                         [tex]a=3[/tex]

Therefore, the final equation is: [tex]y=3(x-1)^2-6[/tex]

Expanding out the brackets and collecting like terms, this can be written as:  [tex]y=3x^2-6x-3[/tex]