Kenny ordered guitar strings for Glenn’s Guitar Shop. The premium guitar strings are $4. 50 apiece. The standard guitar strings are $1. 50 apiece. The bill smeared in the rain, but Kenny knows he ordered a total of 80 strings for $225. Let x = the number of premium strings. Let y = the number of standard strings. X y = 80, 4. 50x 1. 50y = 225 How many of each type of string did Kenny order? He ordered premium strings. He ordered standard strings.

Respuesta :

Answer:

x = 35     y = 45

Step-by-step explanation:

Total number of strings:  x + y = 80  ⇒  x = 80 - y

Substitute  x = 80 - y  into  4.5x + 1.5y = 225  to find y:

4.5(80 - y) + 1.5y = 225

360 - 4.5y + 1.5y = 225

                      3y = 135

                        y = 45

Substitute the found value of y into  x + y = 80  to find x:

x + 45 = 80

x = 80 - 45 = 35

To solve the problem we must know about the system of equations.

System of equation

Inconsistent System

A system of equations to have no real solution, the lines of the equations must be parallel to each other.

Consistent System

1. Dependent Consistent System

A system of the equation to be Dependent Consistent System the system must have multiple solutions for which the lines of the equation must be coinciding.

2. Independent Consistent System

A system of the equation to be Independent Consistent System the system must have one unique solution for which the lines of the equation must intersect at a particular.

The number of premium and standard strings Kenny ordered are 35 and 45 respectively.

Given to us

  • x = the number of premium strings
  • y = the number of standard strings
  • 4.50x + 1.50y = 225
  • x+y = 80

Total Number of Strings

Total Number of Strings

= number of premium strings + number of standard strings

80 = x+ y

Solving for y,

y = 80-x

Total Cost of all strings

Total Cost of all strings

($4.50)x + ($1.50y) = $225

4.50x + 1.50y = 225

Substitute the value of y,

[tex]4.50x + 1.50(80-x) = 225\\\\4.50x +120 -1.5x = 225\\\\4.50x-1.5x = 225-120\\\\3x = 105\\\\x=\dfrac{105}{3}\\\\x = 35[/tex]

Thus, the number of premium strings Kenny ordered was 35.

Substitute the value of x in the equation of y,

y = 80 - x

y = 80 - 35

y = 45

Thus, the number of standard strings Kenny ordered was 45.

Hence, the number of premium and standard strings Kenny ordered are 35 and 45 respectively.

Learn more about System of Equations:

https://brainly.com/question/12895249

Ver imagen ap8997154