Respuesta :

To solve the problem we must know the basic exponential properties.

What are the basic exponent properties?

[tex]{a^m} \cdot {a^n} = a^{(m+n)}[/tex]

[tex]\dfrac{a^m}{a^n} = a^{(m-n)}[/tex]

[tex]\sqrt[m]{a^n} = a^{\frac{n}{m}}[/tex]

[tex](a^m)^n = a^{m\times n}[/tex]

[tex](m\times n)^a = m^a\times n^a[/tex]

The expression can be written as [tex]x^9\sqrt[3]{y}[/tex].

Given to us

  • [tex](x^{27}y)^\frac{1}{3}[/tex]

[tex](x^{27}y)^\frac{1}{3}[/tex]

Using the exponential property[tex](m\times n)^a = m^a\times n^a[/tex],

[tex]=(x^{27}y)^\frac{1}{3}\\\\=x^{\frac{27}{3}}\times y^\frac{1}{3}\\\\=x^9\times y^\frac{1}{3}[/tex]

Using the exponential property [tex]\sqrt[m]{a^n} = a^{\frac{n}{m}}[/tex],

[tex]=x^9\times y^\frac{1}{3}\\\\=x^9\times \sqrt[3]{y}\\\\=x^9 \sqrt[3]{y}[/tex]

Hence, the expression can be written as [tex]x^9\sqrt[3]{y}[/tex].

Learn more about Exponent properties:

https://brainly.com/question/1807508