Answer:
min = 64.2m ; max = 86.2m
Step-by-step explanation:
[tex]38.25m \leq AC < 38.35m
\\ 11.5deg \leq B < 12.5deg
\\ 19.5deg \leq D < 20.5deg[/tex]
[tex]d_{min} = BC_{LB} - CD_{UB}
\\ \\ d_{min} = \frac{AC_{LB}}{tan(B)_{UB}} - \frac{AC_{UB}}{tan(D)_{LB}}
\\ \\ d_{min} = \frac{38.25}{tan(12.5)} - \frac{38.35}{tan(19.5)}
\\ \\ d_{min} = 64.2m (3sf)[/tex]
[tex]d_{max} = BC_{UB} - CD_{LB}
\\ \\ d_{max} = \frac{AC_{UB}}{tan(B)_{LB}} - \frac{AC_{LB}}{tan(D)_{UB}}
\\ \\ d_{max} = \frac{38.35}{tan(11.5)} - \frac{38.25}{tan(20.5)}
\\ \\ d_{max} = 86.2m (3sf)[/tex]