Respuesta :

Answer:

a = 5 m

Step-by-step explanation:

use  [tex]a^2+b^2+c^2[/tex] :

[tex]a^2+3^2=6^2\\ a^2+9=36\\ a^2=36-9\\ a^2=25\\ a=\sqrt{25} \\ a=5[/tex]

Answer:

The length of leg a is 5 m.

Step-by-step explanation:

As per given question we have provided that :

  • [tex]\pink\star[/tex] Leg a: ? m
  • [tex]\pink\star[/tex] Leg b: 3 m
  • [tex]\pink\star[/tex] Hypotenuse c: 6 m

Here's the required formula to find the missing side of triangle :

[tex]{\longrightarrow{\pmb{\sf{{(a)}^{2} + {(b)}^{2} = {(c)}^{2}}}}}[/tex]

  • [tex]\purple\star[/tex] a = ?
  • [tex]\purple\star[/tex] b = 3 m
  • [tex]\purple\star[/tex] c = 6 m

Substituting all the given values in the formula to find the third side of triangle :

[tex]\begin{gathered} \qquad{\implies{\sf{{(a)}^{2} + {(b)}^{2} = {(c)}^{2}}}}\\\\\qquad{\implies{\sf{{(a)}^{2} + {(3)}^{2} = {(6)}^{2}}}}\\\\\qquad{\implies{\sf{{(a)}^{2} + (3 \times 3) = (6 \times 6)}}}\\\\\qquad{\implies{\sf{{(a)}^{2} + (9) = (36)}}}\\\\\qquad{\implies{\sf{{(a)}^{2} + 9 = 36}}}\\\\\qquad{\implies{\sf{{(a)}^{2} = 36 - 9}}} \\\\\qquad{\implies{\sf{{(a)}^{2} = 25}}}\\\\\qquad{\implies{\sf{a = \sqrt{25}}}}\\\\\qquad{\implies{\sf{\underline{\underline{a = 5 \: m}}}}}\end{gathered}[/tex]

Hence, the value of a is 5 m.

[tex]\rule{300}{2.5}[/tex]