Respuesta :

Answer:

The length of x is 12.

Step-by-step explanation:

Here's the required formula to find the missing side of triangle :

[tex]{\longrightarrow{\pmb{\sf{{(a)}^{2} + {(b)}^{2} = {(c)}^{2}}}}}[/tex]

  • [tex]\purple\star[/tex] a = ?
  • [tex]\purple\star[/tex] b = 16
  • [tex]\purple\star[/tex] c = 20

Substituting all the given values in the formula to find the third side of triangle :

[tex]\begin{gathered} \quad{\longrightarrow{\sf{{(a)}^{2} + {(b)}^{2} = {(c)}^{2}}}}\\\\\quad{\longrightarrow{\sf{{(x)}^{2} + {(16)}^{2} = {(20)}^{2}}}}\\\\\quad{\longrightarrow{\sf{{(x)}^{2} + (16 \times 16) = (20 \times 20)}}}\\\\\qquad{\longrightarrow{\sf{{(x)}^{2} + (256) = (400)}}}\\\\\qquad{\longrightarrow{\sf{{(x)}^{2} + 256 = 400}}}\\\\\qquad{\longrightarrow{\sf{{(x)}^{2} = 400 - 256}}}\\\\\qquad{\longrightarrow{\sf{{(x)}^{2} = 144}}}\\\\\quad{\longrightarrow{\sf{x = \sqrt{144}}}}\\\\\quad{\longrightarrow{\sf{\underline{\underline{\purple{x = 12}}}}}} \end{gathered}[/tex]

Hence, the length of x is 12.

[tex]\rule{300}{2.5}[/tex]