Type the correct answer in each box. Use numerals instead of words.
Given that quadrilateral ABCD is a rhombus, determine the missing coordinates for point D.
A(1,1), B(3,5), C(7,7), and D( , ).

Respuesta :

The opposite sides of a rhombus are congruent.

The missing coordinates of point D is (5,2)

How to determine the missing coordinates

The coordinates are given as:

A = (1,1)

B = (3,5)

C =(7,7)

Start by calculating the distance BC using the following distance formula

[tex]BC = \sqrt{(x_2 -x_1)^2 + (y_2-y_1)^2[/tex]

So, we have:

[tex]BC = \sqrt{(7 -3)^2 + (7-5)^2[/tex]

Next, calculate the distance AD

[tex]AD = \sqrt{(x - 1)^2 + (y - 1)^2[/tex]

The side lengths are equal. So, we have:

[tex]\sqrt{(x - 1)^2 + (y - 1)^2} = \sqrt{(7 -3)^2 + (7-5)^2}[/tex]

Cancel the square roots

[tex](x - 1)^2 + (y - 1)^2 = (7 -3)^2 + (7-5)^2[/tex]

[tex](x - 1)^2 + (y - 1)^2 = 4^2 + 2^2[/tex]

By comparison, we have:

[tex]x -1 = 4[/tex]

[tex]y -1 = 2[/tex]

Solve for x and y

[tex]x = 5[/tex]

[tex]y = 2[/tex]

Hence, the missing coordinates of point D is (5,2)

Read more about rhombus at:

https://brainly.com/question/8823615