Answer:
[tex]{\sqrt[3]{4 \dfrac{508}{1331}}}[/tex] = [tex]\dfrac{18}{11}[/tex] or [tex]1\dfrac{7}{11}[/tex]
Step-by-step explanation:
Solving this question by prime factorization method :
[tex]\begin{gathered}\implies{\tt{\sqrt[3]{4 \dfrac{508}{1331}}}}\end{gathered}[/tex]
[tex]\begin{gathered}\implies{\tt{\sqrt[3]{ \dfrac{(4 \times 1331) + 508}{1331}}}}\end{gathered}[/tex]
[tex]\begin{gathered}\implies{\tt{\sqrt[3]{ \dfrac{(5324) + 508}{1331}}}}\end{gathered}[/tex]
[tex]\begin{gathered}\implies{\tt{\sqrt[3]{ \dfrac{5324 + 508}{1331}}}}\end{gathered}[/tex]
[tex]\begin{gathered}\implies{\tt{\sqrt[3]{ \dfrac{5832}{1331}}}}\end{gathered}[/tex]
Prime factorization of :
- 5832 = 2×2×2×3×3×3×3×3×3
- 1331 = 11×11×11
[tex]\begin{gathered}{\implies{\small{\tt{\sqrt[3]{ \dfrac{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}{11 \times 11 \times 11}}}}}}\end{gathered}[/tex]
[tex]\begin{gathered}{\implies{\small{\tt{\sqrt[3]{ \dfrac{ \underbrace{2 \times 2 \times 2} \times \underbrace{3 \times 3 \times 3} \times \underbrace{3 \times 3 \times 3}}{ \underbrace{11 \times 11 \times 11}}}}}}}\end{gathered}[/tex]
[tex]\begin{gathered}{\implies{\tt{\dfrac{2 \times 3\times 3}{11}}}}\end{gathered}[/tex]
[tex]\begin{gathered}{\implies{\tt{\dfrac{6\times 3}{11}}}}\end{gathered}[/tex]
[tex]\begin{gathered}{\implies{\tt{\dfrac{18}{11}}}}\end{gathered}[/tex]
[tex]\begin{gathered}{\implies{\tt{\underline{\underline{\red{1\dfrac{7}{11}}}}}}}\end{gathered}[/tex]
Hence, the answer is 18/11 or 1(7/11).
[tex]\rule{300}{2.5}[/tex]