Respuesta :

Answer:

Step-by-step explanation:

let f(x)=y

[tex]y=\frac{5}{6} x+\frac{5}{9} \\flip~ x ~and ~y\\x=\frac{5}{6} y+\frac{5}{9} \\\frac{5}{6} y=x-\frac{5}{9} \\multiply~by~\frac{6}{5} \\y=\frac{6}{5} x-\frac{6}{9} \\y=\frac{6}{5} x-\frac{2}{3} \\f^{-1}(x)=\frac{6}{5} x-\frac{2}{3} \\g(x)=\frac{6}{5} x-\frac{2}{3}[/tex]

[tex]g(x)=\frac{6}{5} x+\frac{-2}{3}[/tex]