Respuesta :
Answer:
- (a + c) / (c - x)
Step-by-step explanation:
Simplify:
- (a² + 2ac + c²) / (c² + ac - ax - cx) =
- (a + c)² / (c(a + c) - x(a + c)) =
- (a + c)² / (a + c)(c - x) = Cancel out (a + c)
- (a + c) / (c - x)
Answer:
[tex]\frac{(a+c)}{(a-x)}[/tex]
Step-by-step explanation:
Ok, first let's factor out the numerator:
Factor: Numerator
We can use the special binomial product (a + b)² = a² + 2ab + b²
- a² + 2ac + c²
- (a + c)²
Factor: Denominator
We can factor by grouping
- a² - ax + ac - cx
- a(a - x) + c(a - x)
- (a - x)(a + c)
Simplify:
We can remove like terms.
- [tex]\frac{(a+c)(a+c)}{(a-x)(a+c)}[/tex] <= Cancel out (a+c)
- [tex]\frac{(a+c)}{(a-x)}[/tex]
-Chetan K