Given:
[tex] \\ [/tex]
[tex] \\ [/tex]
[tex] \\ [/tex]
To find:
[tex] \\ [/tex]
[tex] \\ [/tex]
Solution:-
[tex] \\ [/tex]
Ad we know Area of rhombus has two Formulas:-
[tex] \\ [/tex]
First :-
Area = (Diagonal 1 × Diagonal 2)/2
[tex] \\ [/tex]
Second:-
Area = B × h
[tex] \\ [/tex]
As we know in this case base and height aren't given, so we will use first formula to find rhombus.
[tex] \\ [/tex]
We know:-
[tex] \\ [/tex]
[tex] \dashrightarrow \sf{}Area \: of \: rhombus = \dfrac{diagonal_1 \times diagonal_2}{2} \\ [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \sf{}Area \: of \: rhombus = \dfrac{19 \times 29}{2} \\ [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \sf{}Area \: of \: rhombus = \dfrac{551}{2} \\ [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \bf{}Area \: of \: rhombus = 275.5 \: {ft}^{2} \\ [/tex]
[tex] \\ [/tex]
know more :-
[tex] \\ [/tex]
[tex]\small\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf \small{Formulas\:of\:Areas:-}}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}[/tex]