contestada

A ladder 15 feet long leans against the top of a structure at a 60 degree angle to the ground. What is the height of the building to the nearest hundredth of a foot?

Respuesta :

Answer:

height of the building is 12.99 feet.

Step-by-step explanation:

given, try to analyse:

  • ladder 15 feet long.
  • 60 degree angle to the ground.

the height of the building is opposite to the angle 60° and given hypotenuse, the ladder of 15 feet long.

using sine rule:

[tex]sin(x) = \frac{opposite}{hypotenuse}[/tex]

[tex]sin(60) = \frac{opposite}{15}[/tex]

[tex]opposite = sin(60) *15[/tex]

[tex]opposite = 12.99feet[/tex]

Therefore the height of the building is 12.99 feet.

Answer:

The height of the building is the long leg.  12.99 foot  

Step-by-step explanation:

The triangle is a 30° - 60° - 90°.  

In this type of triangle the hypotenuse = the short leg × 2. (it is opposite the 30° angle).   The Long leg = the short leg √3

hypotenuse  is the length of the ladder.  

[tex]hypotenuse = short leg (2)[/tex]                          [tex]long leg = short leg \sqrt{3}[/tex]  

[tex]15 = short leg (2)[/tex]                                        [tex]long leg = \frac{15}{2} \sqrt{3}[/tex]  

[tex]\frac{15}{2} = short leg[/tex]                                             [tex]long leg = 12.99[/tex]

[tex]7.5 = short leg[/tex]

The height of the building is the long leg.  12.99 foot