The hydrostatic force is given by the integral of the force acting on
small horizontal strips from the base to the top of the triangle.
Response:
- The hydrostatic force one one side of the plate is 4.41 MN
How can the hydrostatic force acting on the plate be calculated?
The given parameters are;
Base of the triangle = 6 m
Height of the triangle = 15 m
Acceleration due to gravity, g ≈ 9.8 m/s²
Weight density of water, ρ ≈ 1,000 kg/m³
Required:
Hydrostatic force on one side of the plate
Solution:
Considering a thickness, dx, having area, dA = y·dx
The pressure on the strip = ρ·g·x
Force on the strip, dF = ρ·g·x·y·dx
Using similar triangles, we have;
[tex]\dfrac{x}{15} = \dfrac{y}{6}[/tex]
Which gives;
[tex]y = \dfrac{x}{15} \times 6 = \mathbf{ \dfrac{2}{5} \cdot x}[/tex]
Therefore;
[tex]dF = \rho \cdot g \cdot x \cdot \dfrac{2}{5} \cdot x \cdot dx = \mathbf{\rho \cdot g \cdot x^2 \cdot \dfrac{2}{5} \cdot dx}[/tex]
Which gives;
[tex]F =\displaystyle \int\limits^{15}_0 { \rho \cdot g \cdot x^2 \cdot \dfrac{2}{5} } \, dx = \mathbf{\left[\rho \cdot g \cdot x^3 \cdot \dfrac{2}{3\times 5} \right]^{15}_0}[/tex]
Therefore;
[tex]F = \rho \cdot g \cdot \left[x^3 \cdot \dfrac{2}{3\times 5} \right]^{15}_0 = \mathbf{ \rho \cdot g \times 15^3 \cdot \dfrac{2}{3\times 5}} = 450 \cdot \rho \cdot g[/tex]
Which gives;
F = 450 m³ × 1,000 kg/m³ × 9.8 m/s² = 4,410,000 N = 4.41 MN
- The hydrostatic force one one side of the plate, F = 4.41 MN
Learn more about hydrostatic force here:
https://brainly.com/question/14201809