100 pts and mark brainliest
Use the quadratic formula to solve
x^2-4x+3
Show your work. Then describe the solution. if you dont describe the solution it will get reported.

Respuesta :

Answer:

x = 3, x = 1

The points at which the curve crosses the x-axis are (3, 0) and (1, 0)

Step-by-step explanation:

Quadratic formula:

[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

Quadratic equation: [tex]ax^2+bx+c[/tex]

Therefore, for   [tex]x^2-4x+3[/tex]:

a = 1   b = -4   c = 3

Inputting values into quadratic formula:

      [tex]x=\dfrac{4\pm\sqrt{(-4)^2-(4\times1\times3)} }{2\times1}[/tex]

[tex]\implies x=\dfrac{4\pm\sqrt{16-12} }{2}[/tex]

[tex]\implies x=\dfrac{4\pm\sqrt{4} }{2}[/tex]

[tex]\implies x=\dfrac{4\pm2 }{2}[/tex]

[tex]\implies x=2\pm1[/tex]

[tex]\implies x=3, x=1[/tex]

Therefore, the points at which the curve crosses the x-axis are (3, 0) and (1, 0)

[tex]\\ \tt\hookrightarrow x^2-4x+3=0[/tex]

  • a=1
  • b=-4
  • c=3

[tex]\\ \tt\hookrightarrow x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]\\ \tt\hookrightarrow x=\dfrac{4\pm \sqrt{16-12}}{2}[/tex]

[tex]\\ \tt\hookrightarrow x=\dfrac{4\pm 2}{2}[/tex]

  • x=6/2 or 2/2
  • x=3 or 1