contestada

Find the volume of a sphere, whose diameter is 8 mm.(Take n = 3.14) (Round your answer to the nearest tenth).​

Respuesta :

Given:-

[tex] \\ [/tex]

  • Diameter sphere = 8mm
  • [tex]\small \pi = 3.14[/tex]

[tex] \\ [/tex]

To find:-

  • Volume of sphere

[tex] \\ [/tex]

Solution:

To find volume of sphere first we have to convert Diameter into radius .

Diameter = 2 radius

So:-

⇢Diameter = 2 radius

[tex]\\[/tex]

⇢Radius = Diameter/2

[tex]\\[/tex]

⇢Radius = 8/2

[tex]\\[/tex]

⇢Radius = 2 × 2 × 2/2

[tex]\\[/tex]

⇢Radius = 2 × 2/1

[tex]\\[/tex]

⇢Radius = 4/1

[tex]\\[/tex]

⇢Radius = 4 mm.

[tex]\\[/tex]

Now Finally Let's find volume of sphere.

We know:-

[tex]\\[/tex]

[tex]\star\boxed{\rm Volume~of~sphere=\frac{4}{3}\pi r^3}[/tex]

so:-

[tex]\\\\[/tex]

[tex]\dashrightarrow \sf Volume~of~sphere=\frac{4}{3}\times 3.14 \times 4^3\\[/tex]

[tex]\\\\[/tex]

[tex]\dashrightarrow \sf Volume~of~sphere=\dfrac{4}{3}\times \dfrac{314}{100} \times 4^3\\[/tex]

[tex]\\\\[/tex]

[tex]\dashrightarrow \sf Volume~of~sphere=\dfrac{4}{3}\times \dfrac{314}{100} \times 4\times 4\times 4\\[/tex]

[tex]\\\\[/tex]

[tex]\dashrightarrow \sf Volume~of~sphere=\dfrac{4}{3}\times \dfrac{314}{100} \times 64\\[/tex]

[tex]\\\\[/tex]

[tex]\dashrightarrow \sf Volume~of~sphere=1.33\times \dfrac{314}{100} \times 64\\[/tex]

[tex]\\\\[/tex]

[tex]\dashrightarrow \sf Volume~of~sphere= \dfrac{1.33\times314 \times 64}{100}\\[/tex]

[tex]\\\\[/tex]

[tex]\dashrightarrow \sf Volume~of~sphere= \dfrac{26,727.68}{100}\\[/tex]

[tex]\\\\[/tex]

[tex]\dashrightarrow \sf Volume~of~sphere=26,7.28 (approx)\\[/tex]

[tex]\\\\[/tex]

[tex] \therefore \underline{ \textbf{ \textsf{Volume~of~sphere = \red{26,7.28(approx)}}}}[/tex]