Respuesta :
Given:-
[tex] \\ [/tex]
- Diameter sphere = 8mm
- [tex]\small \pi = 3.14[/tex]
[tex] \\ [/tex]
To find:-
- Volume of sphere
[tex] \\ [/tex]
Solution:
To find volume of sphere first we have to convert Diameter into radius .
Diameter = 2 radius
So:-
⇢Diameter = 2 radius
[tex]\\[/tex]
⇢Radius = Diameter/2
[tex]\\[/tex]
⇢Radius = 8/2
[tex]\\[/tex]
⇢Radius = 2 × 2 × 2/2
[tex]\\[/tex]
⇢Radius = 2 × 2/1
[tex]\\[/tex]
⇢Radius = 4/1
[tex]\\[/tex]
⇢Radius = 4 mm.
[tex]\\[/tex]
Now Finally Let's find volume of sphere.
We know:-
[tex]\\[/tex]
[tex]\star\boxed{\rm Volume~of~sphere=\frac{4}{3}\pi r^3}[/tex]
so:-
[tex]\\\\[/tex]
[tex]\dashrightarrow \sf Volume~of~sphere=\frac{4}{3}\times 3.14 \times 4^3\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow \sf Volume~of~sphere=\dfrac{4}{3}\times \dfrac{314}{100} \times 4^3\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow \sf Volume~of~sphere=\dfrac{4}{3}\times \dfrac{314}{100} \times 4\times 4\times 4\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow \sf Volume~of~sphere=\dfrac{4}{3}\times \dfrac{314}{100} \times 64\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow \sf Volume~of~sphere=1.33\times \dfrac{314}{100} \times 64\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow \sf Volume~of~sphere= \dfrac{1.33\times314 \times 64}{100}\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow \sf Volume~of~sphere= \dfrac{26,727.68}{100}\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow \sf Volume~of~sphere=26,7.28 (approx)\\[/tex]
[tex]\\\\[/tex]
[tex] \therefore \underline{ \textbf{ \textsf{Volume~of~sphere = \red{26,7.28(approx)}}}}[/tex]