Respuesta :

The question is an illustration of right triangles

  • The values of x and y are 13 and [tex]13\sqrt 2[/tex], respectively
  • The value of x and y is 13
  • The values of x and y are 6 and [tex]\frac{3\sqrt 3}{2}[/tex], respectively

How to determine the value of each variable

Triangle 1

This triangle is an isosceles right triangle.

So, the values of x and y are:

[tex]x = 13[/tex]

[tex]y = 13\sqrt 2[/tex]

Triangle 2

This triangle is an isosceles right triangle.

So, the values of x and y are:

[tex]x = 13[/tex]

[tex]y = 13[/tex]

Triangle 3

To calculate x, we make use of the following cosine ratio

[tex]\cos(60) = \frac 3x[/tex]

Make x the subject

[tex]x = 3 \div \cos(60)[/tex]

Solve for x

[tex]x = 3 \div 0.5[/tex]

[tex]x = 6[/tex]

The value of y is then calculated using:

[tex]\sin(60) = \frac y3[/tex]

Make y the subject

[tex]y = 3 * \sin(60)[/tex]

[tex]y = 3 * \frac{\sqrt 3}{2}[/tex]

[tex]y =\frac{3\sqrt 3}{2}[/tex]

Read more about right triangles at:

https://brainly.com/question/2217700