Respuesta :

  • 48/32=3/2
  • r=3/2
  • a=32

Verify with next one

  • 48(3/2)=72

Verified

formula

[tex]\\ \tt\hookrightarrow a_n=ar^{n-1}[/tex]

[tex]\\ \tt\hookrightarrow a_n=32(3/2)^{n-1}[/tex]

Answer:

[tex]a_n=32 \cdot \left(\dfrac32 \right)^{n-1}[/tex]

Step-by-step explanation:

The difference between each term in the sequence is not the same, therefore the sequence is a geometric sequence.

Geometric sequence formula:  [tex]a_n=a r^{n-1}[/tex]

where [tex]a[/tex] is the start term and [tex]r[/tex] is the common ratio

Given [tex]a = 32[/tex]

To calculate [tex]r[/tex], divide one term by its previous term:

[tex]\implies r=\dfrac{a_4}{a_3}=\dfrac{108}{72}=\dfrac32[/tex]

Therefore, [tex]a_n=32 \cdot \left(\dfrac32 \right)^{n-1}[/tex]