Which coordinate pair fits the set of coordinates {(0, 4), (-2, 1), (-4, -2)} defined by a linearfunction?A. (5, 12)B. (6, -4)C. (-3, -1)D. (-6, -5)

Respuesta :

Answer:

D  (-6, -5)

Step-by-step explanation:

We need to create a linear function for the set of coordinates, input the x-values of the possible options into the function, then see which one gives the correct y-value.

Pick 2 coordinate pairs from the set:

Let [tex](x_1,y_1)[/tex] = (0, 4)

Let [tex](x_2,y_2)[/tex] = (-2, 1)

Use slope formula: [tex]m=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{1-4}{-2-0}=\dfrac32[/tex]

Use equation of a line in point-slope form to create the linear function:

      [tex]y-y_1=m(x-x_1)[/tex]

[tex]\implies y-4=\dfrac32(x-0)[/tex]

[tex]\implies y=\dfrac32x+4[/tex]

Therefore, the linear function is [tex]f(x)=\dfrac32x+4[/tex]

Inputting the x-values of the possible options, (-6, -5) is the only coordinate pair that is correct:

[tex]f(-6)=\dfrac32(-6)+4=-5[/tex]

  • Take two points
  • (0,4)
  • (-2,1)

Slope:-

[tex]\\ \tt\hookrightarrow m=\dfrac{1-4}{-2}=\dfrac{-3}{-2}=\dfrac{3}{2}[/tex]

Equation of line in point slope form

[tex]\\ \tt\hookrightarrow y-4=3/2(x)[/tex]

[tex]\\ \tt\hookrightarrow y=3/2x+4[/tex]

Check out option D

  • -6,-5

[tex]\\ \tt\hookrightarrow -5=3/2(-6)+4[/tex]

[tex]\\ \tt\hookrightarrow -5=-9+4[/tex]

[tex]\\ \tt\hookrightarrow -5=-5[/tex]

Hence option D is correct