Respuesta :
Solution:
Note that:
- Area of triangle = 6 3/8 yd²
- Height of triangle = 2 1/2
- Area of triangle = 1/2 x base x altitude
Use the formula to find the base of the triangle.
- 1/2 x base x altitude = 6 3/8 yd²
- => 1/2 x base x 2 1/2 = 6 3/8 yd²
- => 1/2 x base x 5/2 = 6 3/8 yd²
- => 5/4 x base = 6 3/8 yd²
- => base = 6 3/8 ÷ 5/4 yd
- => base = 51/8 x 4/5 yd
- => base = 51/2 x 1/5 yd
- => base = 51/10 yd
The length of the base is 51/10 yards.
[tex]\large{|\underline{\mathtt{\red{G}\blue{i}\orange{v}\pink{e}\blue{n}\purple{}\green{}\red{↯}\blue{}\orange{}}}}[/tex]
- Area of triangle = 6 3/8 yards²
- Height of triangle = 2 1/2 yards
[tex]\large{|\underline{\mathtt{\red{T}\blue{o}\orange{\:}\pink{F}\blue{i}\purple{n}\green{d}\red{↯}\blue{}\orange{}}}}[/tex]
- Base of triangle = ?
[tex]\large\underline{\underline{\maltese{\blue{\pmb{\sf{\: Explanation :-}}}}}}[/tex]
[tex] \boxed{\mathfrak{area = \frac{1}{2} \times base \times height}}[/tex]
We are already given the values, Let's plug them and solve for x i.e base
[tex] \bf\: 6 \frac{3}{8} = \frac{1}{ \cancel2} \times x \times \cancel2 \frac{1}{2} [/tex]
[tex] \bf \: 6\frac{3}{8} = x \times \frac{1}{2} [/tex]
Convert the mixed number to an improper fraction
[tex] \bf \: \frac{51}{8} = \frac{1}{2} x[/tex]
Multiply both sides of the equation by 2
[tex] \boxed{ \tt \: x = \frac{51}{4} }[/tex]
➪ Therefore, The base of the triangle is 51/4 yards...~