NO LINKS!! Please help me with this problem.

3 Answers:
========================================================
Explanation:
Multiply the given radian angle measure by the fraction 180/pi to convert to degree form.
This gives
[tex]\left(\frac{7\pi}{4}\right)*\left(\frac{180}{\pi}\right) = 315[/tex]
The pi terms cancel.
Therefore, 7pi/4 radians = 315 degrees.
----------------------------
Use the unit circle (see below) to see that 315 degrees is in quadrant 4.
The terminal point that corresponds to this angle is [tex]\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)[/tex]
This leads us to
[tex]\cos(\theta) = \frac{\sqrt{2}}{2}\\\\\sin(\theta) = -\frac{\sqrt{2}}{2}\\\\[/tex]
Since any point on the unit circle is of the form [tex](x,y) = (\cos(\theta),\sin(\theta))[/tex]
The ratio of those sine and cosine values leads to the tangent value.
[tex]\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\\\\\tan(\theta) = \sin(\theta) \div \cos(\theta)\\\\\tan(\theta) = -\frac{\sqrt{2}}{2} \div \frac{\sqrt{2}}{2}\\\\\tan(\theta) = -\frac{\sqrt{2}}{2} \times \frac{2}{\sqrt{2}}\\\\\tan(\theta) = -1\\\\[/tex]
----------------------------------
Go back to the 315 degree angle.
This angle is between 270 and 360, so it's in Q4.
The reference angle for anything in Q4 is 360-theta
So the reference angle here is 360-theta = 360-315 = 45.
Answer:
[tex]tan (\theta)=-1[/tex]
[tex]sin (\theta)=-\dfrac{\sqrt{2} }{2}[/tex]
The measure of the reference angle is 45°
Step-by-step explanation:
[tex]tan \left(\dfrac{7\pi }{4} \right)=-1 \ \implies \ \textsf{true}[/tex]
[tex]cos \left(\dfrac{7\pi }{4} \right)=\dfrac{\sqrt{2} }{2} \ \implies \ \textsf{untrue}[/tex]
[tex]sin\left(\dfrac{7\pi }{4} \right)=-\dfrac{\sqrt{2} }{2} \ \implies \ \textsf{true}[/tex]
Reference Angle
convert the angle to degrees:
[tex]\implies \dfrac{7\pi }{4} \ \textsf{rad} =\dfrac{7\pi }{4} \times \dfrac{180}{\pi}=315 \textdegree[/tex]
So the angle is quadrant IV
For angles in quadrant IV: reference angle = 360° - angle
Therefore, reference angle = 360 - 315 = 45°