Respuesta :
Answer:
[tex]\frac{41}{11}.[/tex]
Step-by-step explanation:
1) to make up the equation of the given line:
[tex]\frac{x-X_R}{X_S-X_R} =\frac{y-Y_R}{Y_S-Y_R}; \ => \frac{x+5}{1+5} =\frac{y+6}{5+6}; \ => \frac{x+5}{6} =\frac{y+6}{11}.[/tex]
2) to substitute y=10 into the equation of the given line, then to calculate the value of 'x':
[tex]\frac{x+5}{6} =\frac{10+6}{11}; \ => \ x=\frac{96}{11}-5=\frac{41}{11}.[/tex]
Equation of ST :-
Slope=
- m=5+6/1+5=11/6
Equation in point slope form
- y+6=11/6(x+5)
- 6y+36=11x+55
- 6y=11x+19
- y=11/6x+19/6
Now T lies on this line
- 10=11/6x+19/6
Ok solving we would get
- x=41/11