Respuesta :

  • h be height

[tex]\\ \rm\Rrightarrow V=\pi r^2h[/tex]

[tex]\\ \rm\Rrightarrow h=\dfrac{V}{\pi r^2}[/tex]

[tex]\\ \rm\Rrightarrow h=\dfrac{226.2}{3.14(9)}[/tex]

[tex]\\ \rm\Rrightarrow h=226.2/28.26[/tex]

[tex]\\ \rm\Rrightarrow h=8cm[/tex]

Ⲁⲛ⳽ⲱⲉⲅ:

  • Height of cylinder = 8 cm

[tex] \quad\rule{300pt}{1.5pt}\quad[/tex]

Ⲋⲟⳑⳙⲧⳕⲟⲛ :

Information provided:

  • Volume of cylinder = 226.2 cm.
  • Radius of cylinder = 3 cm
  • we have to use π = 3.14

Volume of cylinder is given by:

[tex] \qquad\quad\bull~ {\boxed {\large\mathfrak {V = \pi r^2 h } }}[/tex]

‎ㅤ(We have to find the height of cylinder)

Ⲧⲏⲉⲅⲉ⳨ⲟⲅⲉ:

[tex] \quad\dashrightarrow\quad \sf {V = \pi r^2 h }[/tex]

[tex] \quad\dashrightarrow\quad \sf { 226.2 = 3.14 \times 3^2 \times h}[/tex]

[tex] \quad\dashrightarrow\quad \sf { h = \dfrac{226.2}{3.14\times 9}}[/tex]

[tex] \quad\dashrightarrow\quad \sf {h = \cancel{\dfrac{226.2}{28.26}} }[/tex]

[tex] \quad\dashrightarrow\quad \sf {h = 8.004 }[/tex]

[tex] \quad\dashrightarrow\quad {\pmb{\sf { h = 8 cm}}}[/tex]

‎ㅤ‎ㅤ‎ㅤ‎ㅤ~Hence, the height of given cylinder is 8cm.

[tex]\underline{\rule{300pt}{2pt}} [/tex]