Respuesta :

Answer:

see below

Step-by-step explanation:

Set the equation equal to 0

[tex]2x^{2} -5x+3[/tex]

a = 2

b = -5

c = 3

plug values in to quadratic formula

[tex]x=\frac{-b+/-\sqrt{b^{2} -4ac} }{2a}[/tex]

[tex]x=\frac{-(-5)+/-\sqrt{(-5)^{2} -4(2)(3)} }{2(2)}[/tex]

simplify

[tex]x=\frac{5+/-\sqrt{25 -24} }{4}[/tex]

[tex]x=\frac{5+/-\sqrt{1} }{4}[/tex]

[tex]\sqrt{1} = 1[/tex]

we get two options

[tex]x=\frac{5+1 }{4}[/tex]

[tex]x=\frac{6 }{4}[/tex]

and

[tex]x=\frac{5-1 }{4}[/tex]

[tex]x=\frac{4 }{4} = 1[/tex]

Answer:

Step-by-step explanation:

[tex]2x^{2} +3 = 5x\\2x^{2} -5x+3) = 0\\(2x-2)(x-(3/2))=0\\\\[/tex]

Set (2x-2) =0 and (x-(3/2))= 0

Thus x = 1 and x= (3/2)

Hope that helps