Respuesta :
Answer:
[tex]y = \frac83, y = -\frac83[/tex]
Step-by-step explanation:
Solve:
- [tex]64y = 9y^3[/tex]
- [tex]64 = 9y^2 \text{ divide both sides by y}[/tex]
- [tex]\frac{64}{9} = y^2 \text{ divide both sides by 9}[/tex]
- [tex]\sqrt{\frac{64}{9}} = \sqrt{y^2}[/tex]
- [tex]\frac83 = |y|[/tex]
- [tex]y = \frac83, y = -\frac83[/tex]
Use rule: √a² = |a|
-Chetan k
64 = 9y^3
Divide through by 9y
64/9=y^2
y^2=64/9
y= √(64/9) or -√(64/9)
y=8/3 or -8/3
y=2 2/3 or -2 2/3
Divide through by 9y
64/9=y^2
y^2=64/9
y= √(64/9) or -√(64/9)
y=8/3 or -8/3
y=2 2/3 or -2 2/3