Problem 0: Compute the inverse Laplace Transforms of:
[tex]F(s) = \frac{s + 1}{s(s - 1)(s - 3)} [/tex]

[tex]F(s) = \frac{1}{(s - 1)(s - 2)(s - 3)} [/tex]

Problem 0 Compute the inverse Laplace Transforms oftexFs fracs 1ss 1s 3 textexFs frac1s 1s 2s 3 tex class=

Respuesta :

Decompose each given F(s) into partial fractions.

[tex]F(s) = \dfrac{s+1}{s(s-1)(s-3)}[/tex]

has partial fraction decomposition

[tex]\dfrac{s+1}{s(s-1)(s-3)} = \dfrac as + \dfrac b{s-1} + \dfrac c{s-3}[/tex]

Combine the rational terms on the right and solve for the coefficients:

[tex]\dfrac{s+1}{s(s-1)(s-3)} = \dfrac{a(s-1)(s-3) + b s(s-3) + c s(s-1)}{s (s-1) (s-3)}[/tex]

[tex]1 = a(s-1)(s-3) + bs(s-3) + c s(s-1)[/tex]

[tex]1 = 3 a + (-4 a - 3 b - c) s + (a + b + c) s^2[/tex]

[tex]\begin{cases}3a=1 \\ -4a-3b-c = 0 \\ a+b+c=0 \end{cases} \implies a=\dfrac13, b=-\dfrac12, c=\dfrac16[/tex]

Then

[tex]F(s) = \dfrac13 \times \dfrac1s - \dfrac12 \times \dfrac1{s-1} + \dfrac16 \times \dfrac1{s-3}[/tex]

Using the frequency-shifting property, the inverse transform is

[tex]\boxed{f(t) = \dfrac13 - \dfrac{e^t}2 + \dfrac{e^{3t}}6}[/tex]

The other transform can be dealt with in the same manner.

[tex]F(s) = \dfrac1{(s-1)(s-2)(s-3)} = \dfrac a{s-1} + \dfrac b{s-2} + \dfrac c{s-3}[/tex]

[tex]\implies 1 = a(s-2)(s-3) + b(s-1)(s-3) + c(s-1)(s-2)[/tex]

[tex]\implies 1 = 6 a + 3 b + 2 c + (-5 a - 4 b - 3 c) s + (a + b + c) s^2[/tex]

[tex]\implies \begin{cases}6 a + 3 b + 2 c=1 \\ -5a-4b-3c = 0 \\ a+b+c=0\end{cases} \implies a=\dfrac12, b=-1, c=\dfrac12[/tex]

[tex]\implies F(s) = \dfrac12 \times \dfrac1{s-1} - \dfrac1{s-2} + \dfrac12 \times \dfrac1{s-3}[/tex]

[tex]\implies \boxed{f(t) = \dfrac{e^t}2 - e^{2t} + \dfrac{e^{3t}}2}[/tex]