Respuesta :

Answer:

B is only true and the correct option.

Explanation:

[tex]\left(cos90\right)\left(cos30\right)-\left(sin90\right)\left(sin30\right)[/tex]

  • [tex]\quad \cos \left(90^{\circ \:}\right)=0[/tex]
  • [tex]\quad \sin \left(90^{\circ \:}\right)=1[/tex]
  • [tex]\quad \sin \left(30^{\circ \:}\right)=\frac{1}{2}[/tex]
  • [tex]\cos \left(30^{\circ \:}\right)=\frac{\sqrt{3}}{2}[/tex]

when simplified:

[tex]\left(cos90\right)\left(cos30\right)-\left(sin90\right)\left(sin30\right) = \ -\frac{1}{2}[/tex]

from options:

A) [tex]cos60^\circ =\frac{1}{2}[/tex]

✔B) [tex]\cos \left(120^{\circ \:}\right) = -\frac{1}{2}[/tex]

C) [tex]sin60^\circ = \frac{\sqrt{3} }{2}[/tex]

D) [tex]sin120^\circ = \frac{\sqrt{3} }{2}[/tex]

(cos90°) (cos30°) – (sin90°) (sin30°)

[tex]cos (90°) = 0[/tex]

[tex]sin (90°) = 1[/tex]

[tex]sin (30°) =\frac{1}{2}[/tex]

[tex]cos (30°) = \frac{ \sqrt{3} }{2} [/tex]

Simplified :

[tex](cos90) (cos30) – (sin90) (sin30) = - \frac{1}{2} [/tex]

So, B) [tex]cos (120°) = - \frac{1}{2} [/tex]