Respuesta :
Answer:
There lies 2 solutions.
Step-by-step explanation:
[tex]cos\:2x\:-\:sin^2\:x\:=\:0\:[/tex]
rewrite the expression:
[tex]\cos ^2\left(x\right)-2\sin ^2\left(x\right)=0[/tex]
Factor the expression:
[tex]\left(\cos \left(x\right)+\sqrt{2}\sin \left(x\right)\right)\left(\cos \left(x\right)-\sqrt{2}\sin \left(x\right)\right)=0[/tex]
solve them separately:
[tex]\cos \left(x\right)+\sqrt{2}\sin \left(x\right)=0\quad \ \ or \ \ \cos \left(x\right)-\sqrt{2}\sin \left(x\right)=0[/tex]
final answer:
[tex]35.26438^{\circ \:}[/tex] , [tex]215.3^{\circ \:}[/tex]
Answer:
4 solution
Step-by-step explanation:
cos 2θ − sin^2 θ = 0
Use trig identity cos 2θ = 1 - 2sin² θ
cos 2θ − sin^2 θ = 0
1 - 2sin² θ − sin^2 θ = 0
-3sin² θ = -1
sin² θ = 1/3
sin θ = ±√(1/3)
The reference angle is 35.26°.
Since the interval is [0, 360°), there are 4 solutions:
35.26°, 144.74°, 215.26°, 324.74°
There are 4 solutions.